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Abstract— This paper presents an improved Frame Level Redundancy Scrubbing (FLR) algorithm that uses Cyclic
Redundancy Check (CRC) as an error detection technique for configuration memory scrubbing, is developed as a solution to
mitigate Single Event Upset (SEU) through upset detection and correction. Fault injection was performed on FPGA
configuration memory frames on a different number of modules to emulate SEU. The improved FLR algorithm was
implemented and system level simulation was carried out using MATLAB. The performance of the improved FLR
algorithm was compared with that of the existing FLR algorithm using error correction time and energy consumption as
metrics. The results of this work showed that the improved FLR algorithm produced 31.6% improvement in error correction
time and 61.1% improvement in energy consumption over the existing FLR algorithm.
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INTRODUCTION

SRAM FPGAs are complementary metal oxide
semiconductor (CMOS) devices with a special characteristic
of reconfigurability making them desirable for use in systems
with evolving technology [1]. The use of FPGAs has been
shown to provide high computational density and efficiency
for many computing applications by allowing circuits to be
customized to any application of interest. They are attractive
to critical applications due to their high performance, power
consumption, and reconfiguration capability [2], and can be
re-configured in the field, design updates can be performed
while the device is still operational. Compared to application
specific integrated circuits (ASICs), whose functions cannot
be altered after fabrication, SRAM-based FPGAs have the
advantage of being reprogrammed and providing a lower
cost per device in small quantities, therefore, there is great
interest in exploiting these benefits in space and other
radiation environments [3]. Mapping refers to the
configuration of the FPGA device [4]. In SRAM based FPGAs,
the mapped circuit is totally controlled by the configuration
memory which is composed of SRAM cells [5]. A modern
generation FPGA have tens of thousands to millions of
system gates, with hundreds of millions of configurations
bits, dominating the SRAM cells in the device [6].

While SRAM-based FPGAs offer several advantages for
critical based operations, they are sensitive to SEUs. Thus,
when a fault changes the state of an SRAM cell, this event is
referred as SEU [7]. In other words, SRAM-based FPGAs are
more prone to soft errors since a radiation strike in a
configuration memory has a permanent effect on the
functionality of the mapped design [8]. The SRAM-based
FPGAs are especially sensitive to SEUs within the
configuration memory of the device. The configuration
memory defines the operation of the FPGA resources and
upsets in the configuration memory can change the operation
of the circuit. To ensure proper operation SRAM-based FPGA
circuit designs must mitigate against any configuration
memory SEU which could alter the design [9].

The configuration memory of SRAM-based FPGAs is
arranged into segments called “configuration frames”, and
this represents the largest portion of the memory cells in the
device. Some factors that increase the susceptibility to soft
errors are the reduction of the transistor size and the lower
voltage operations of these SRAM memory cells [1].
Technology scaling leads to an increase in memory density as
well as the probability of SEUs and MBUs in adjacent bits due
to particle strike. Soft errors (reversible errors) can be
generally tolerated in consumer electronics but can have
adverse effects in mission-critical applications using SRAM-
based FPGA [10]. Soft errors in the configuration memory bits
of SRAM based FPGAs have a persistent effect and they
remain until the original configuration is rewritten [1].

The presence of high energy protons, heavy ions, and galactic
cosmic rays in the space and other radiation environment
cause a number of problems for electronics, including FPGAs.
This radiation can induce a number of negative effects
including upsets in the internal state of the device and can
cause several problems in FPGA-based systems. As
mentioned earlier, SEUs can corrupt the configuration
memory of the device causing the design configured on the
device to operate incorrectly [11]. Configuration memory
scrubbing is a technique used to correct or mitigate against
errors (SEUs) in SRAM-based FPGA after they are detected by
other techniques such as CRC. [12]. SEU mitigation is crucial
for systems operating in harsh environments with high levels
of cosmic radiation. Energetic particles generate charge as
they traverse the semiconducting materials which get
deposited inducing voltage transients to the interconnected
nodes. [10].

METHODS AND MATERIAL
In this section, the relevant information needed to implement

the proposed algorithms are provided.

21 Single Event Upset
SEU is a form of Single Event Effects (SEE) which are a
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change of logic states or transients in a device induced by
energetic radiation particles from the environment in which
the device is operated. A single event upset is the change in
state of a digital memory element caused by high energy
particles such as protons, neutrons, or heavy ions. If the
ionizing particle passes from one node to another, and the
charge is greater than the device specific critical charge,
(critical charge is defined as the minimum amount of charge
to flip the data stored in a memory element [18]), this charge
transfer can change the voltage level of critical nodes within
the configuration memory cell of an FPGA such that the
improved voltage level reflects the opposite state of the cell
(that is changing a logic ““1” to a logic “0” or a logic “0” to a
logic ““1”). The feedback nature of static latches will preserve
this new value and the original value will be lost [3].

A single bit flip can have significant consequences on
FPGA functionality and a serious impact on the design itself.
For example, a single bit flip in a flip-flop in the Configurable
CLB or Lookup Table (LUT) can change a Boolean AND
function to a different Boolean function, in other words, any
bit-flip in the LUT may cause the logic implemented by it to
produce a faulty output as long as it is not corrected. A single
bit flip can also change the connections in the FPGA’s routing
network. The results of an SEU in an FPGA’s configuration
memory can be unpredictable [19]. Figure 1 demonstrates
what may happen to the two-input “AND” gate. When upsets
occur in the configuration memory, the first configuration
upset is a change in the routing configuration data as shown
in Figure 2 that disconnects one input from the “AND” gate.
The second configuration upset as depicted in Figure 3 is a
change in the look-up table content of the “AND”" gate and
modifies the operation logic function (it no longer performs
the “AND” function rather it now performs an “exclusive OR”
function). In both cases, upsets in the configuration memory
change the behavior of the circuit so that the circuit no longer
performs the function intended by the circuit designer.

0111010100001
—0100010101010
—1111000010107 010101 E
— w?ﬂw 010101 A
—0000000001111 010101| Multiplexer
0101010301010 LUT User Flip-flop
[ oo
100110011 101011
010101011
— 1111001010100 11010100 001100
— 0101010101010 01010100 110011| Multiplexer
1101010101010 LUT User Flip-flop

Figure 1: Configuration Memory Used to Specify Logic and
Routing [19]

’§ Configuration Upset (routing changes)
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0100010101010
1111000010101 010101 E
e—010101
1000000001111 010101| Multiplexer
0101010101010
‘ ‘ ‘ User Flip-flop
1010101010111
————00000#{111100 10100101 [
1 10101011 00110011 101011
11010100 001100
———1111001010100 )
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Figure 2: Upset in Routing [19]

Configuration Upset (Logic changes)

0111010100001
——0100010101010
—111100001010T 010101
—_— 00 010101
— 0000000001111 010101| Multiplexer
0101010301010 User Flip-flop
B
00110011 101011
— 010101011
—1111001010100 11010100 001100 .
— 0101010101010 01010100 110011| Multiplexer
1101010101010 LUT User Flip-flop

Figure 3: Upset in Logic [19].

22 Cyclic Redundancy Check

Besides transferring data as quickly as possible, storage
systems have to maintain data integrity, assuring correctness
of storage data. Algorithms for data integrity becomes an
important component of such system. CRC as an error
detection mechanism that maintains data integrity and can be
used during readback process on each frame header storing
only the check word rather than the entire frame of the
configuration data [20, 21].

In the encoding process of an r-bit CRC, after selecting a
fixed generator polynomial G(x) having a degree r and M(x) is
the message word or data in the configuration memory.
Therefore, a multinomial is generated having k-bits of the
message word with an appended r-bits redundancy. The
following steps are executed (Zhang & Ding, 2011):

A. Generating a multinomial by multiplying X" with
M (x) to give

x"*M(x)
)
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B. Dividing x“’kM(x) by G (X) results in a quotient
of Q (X) and a remainder of R (X) . The degree of
R (X) must be smaller than the degree of G (X),

thatisr.

The result of the division yields:

X"*M(x) R(x)
o) )

x"*M (X) is the encoded message word
R (X) is the remainder which is the CRC value.
Q (X) is the quotient

Therefore, the encoded message word can be expressed as:

X“’kM(x) = G(x)Q(x)+R(x)
®3)

The data in the storage device is the dividend and the
remainder become the result. Every bit in the storage device
requires one exclusive-OR (XOR) and one shift operation to
the left by the degree of a polynomial minus one bit [22].

2.3 Power Consumption

Configuration memory scrubbing comes with power
consumed by the scrubber circuitry. This is because power
overhead is driven by the scrub or readback rate. Total power
consumption is composed of static and dynamic power. Static
power is related to the transistor leakage current and dynamic
power is related to the switching activity of transistors and its
value depends on the rate of switching. The static power
consumption can be considered negligible and the dynamic
power is to the total
consumption.

The total power consumption (Pr) is the sum of the
dynamic power (Pp) and Static Power (Ps). The total power,
static and dynamic power is given equation 4, 5 and 6
respectively [23]:

the main contributor power

R=R+RK 4
Po =Vee + e (5)
Where;

VCC is the voltage level and ICC is the leakage current

n
2
P, = Z:Bici fvcc (6)
i=1
Where;
N = number of toggling nodes, ﬁl = switching activity,
Ci = load capacitance of the node, f = clock frequency and

Vcc = transistor source voltage

Since all the transistors in an SRAM of an FPGA are turned on
independently to the design synthesized into the configurable

memory, it is expected that the static power of a design is
almost constant when compared to the total power consumed
of the device. In order to estimate the power overhead of a
TMR system implemented in an SRAM-based FPGA, it is
assumed that the use of three modules will mainly impact the
dynamic power component [23].

1 DEVELOPED SCHEMES

The Methodology adopted in this are as follows:

A. Replication of the FLR scrubbing algorithm which requires the
following steps to be carried out:
1. Generate configuration memory in the MATLAB

environment.
2. Assign Logic bits to the frame cells representing the
mapped designed.
3. Triplicate the configuration memory to form three
modules.

4. Perform fault injection campaign on the three
configuration memory module to randomly flip bits
in the frame cells.

5. Compare logic bits in the same cell position with the
same frame address in the three configuration
memory module for SEU detection.

6. Perform bit-level voting for SEU correction.

B. The following steps describe the improved frame level
redundancy internal scrubbing algorithm:

1. Repeatitems 1 to 3 of methodology A.

2. Compute CRC code to be stored in the configuration

memory frame header.

3. Repeat step 4 of methodology A.

4. Re-compute cyclic redundancy for error detection.

5. On detection of SEU, voting is performed on the

configuration frame.
C. Comparison of the results obtained with that of the
existing using error correction time and energy
consumption as metrics for the purpose of validation.

To the best knowledge of the researchers, there is no known
single command capable of generating a random binary
array of numbers MATLAB. A command (rand) capable of
generating a random distribution of numbers with a mean of
zero and deviation of 1 do exist. However, since the FPGA
configuration memory consists of binary numbers (0 and 1)
and based on the numbers of SRAM cells in the FPGA
module, this random command was used with a limiting
factor to formulate an equation capable of generating the
configuration memory containing only random binary logic.
Therefore, the expression used to generate the configuration
memory is written as:

M, =¢(z)>7

@)

where,

My is the modules array (n= 1, 2 and 3), ¢ is a random
number generator (rand) in the range of 0 and 1, ¢ was
implemented as rand in the MATLAB script. 7 is the FPGA
configuration memory module dimension which is an N by
D binary matrix.
n is a limiting factor whose values ranges from. A higher

value of 7] will lead to a logic matrix with more 1 and a
smaller value of 7] will lead to a logic matrix with more 0.
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3.1 Fault Injection

With the information about the organization of the
configuration memory of the FPGA and the specific
commands sequence to read and write frames, any bit(s) of
the configuration memory can be flip thus emulating the
effect of SEU when the FPGA is exposed to radiation
environment such as space. For the purpose of this research,
the fault injected module is made user dependent.

The existing FLR continuously attempt to perform bit
level voting to scrub against SEU on the configuration
memory frame irrespective whether there is an upset or not in
the configuration memory thereby causing the SRAM cells to
be frequently accessed which increases the dynamic power of
the device. However, the improved FLR employs CRC as an
error detection scheme against SEU, meaning bit level voting
is only performed when an upset is detected.

How fast SEUs are mitigated in applications such as
space technology is critical because a single bit flip in the
sensitive bits in the FPGA configuration memory can cause
malfunction of the device or cause the device to produce
faulty outputs thereby jeopardizing the satellite mission.
Thus, CRC is a fast and effective error detection scheme which
detects SEU before they are corrected. The time it takes to
correct (scrub) these errors affects the energy consumed in the
correction process since energy is a function of time.

4 RESULTS AND DISCUSSIONS

The developed algorithms were implemented in
MATLAB and simulation results obtained are presented in
this section. Figure 4, shows the error detection time against
the number of frames.
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Figure 4: Error Detection Time versus Number of Frames for
One Module Fault Injection.

Figure 5 shows the graph of error detection time against a
number of the frame in a module, the graph was plotted using
MATLAB simulation environment from the simulation
parameters and results.

From Figure 4, it was observed that the time to detect an
error (SEU) in the improved FLR was within the range of
7.114 and 7.333 microseconds irrespective of the number of
frames in a module. As the number of frames increases from
13, 26, 39, 52, and 65 continuously, so also the number of cells
in a frame increases from 42, 84, 126, 168, 210 continuously,
and the time to detect error is within the range 7.114 and 7.333

microseconds for a module. This is because CRC is executed
concurrently on the module frames and a 16-bit CRC executed
can sufficiently detect an error in a frame of Virtex-5 FPGA.
Therefore, irrespective of the number of frames the detection
time is approximately constant.
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Figure 5: Error Correction time versus Number of Frames for
One Module Fault Injection.

From Figure 5, it can be seen that when the number of
cells in a frame and number of frames in a module increases,
the time is taken to correct error also increases. This indicates
that the time it will take to scrub a module is dependent on
the number of injected fault and the size location of the fault
injection. Because as the location of the fault injected
increases, the time to scrub that area size also increases. As it
was observed, for a fault injection matrix size of 12,6 24,12
36,18 48,24 60,30 continuously, the error correction time from
simulated result was 2.444, 2933, 3.422, 3911, 5.377
microseconds respectively.

Figure 6, shows the bar chart for the energy consumed versus
a number of frames in a module which was generated using
MATLAB simulation environment.

Energy Consumed in {nJ)

13 26 39 52 65 78 91 104 117 130
Number of Frames
Figure 6: Energy Consumption versus a number of frames for
One Module Fault Injection.

Figure 6 is the plot of energy consumed against a
number of frames in one module with fault injection. It can be
seen from Figure 6 that as the time to scrub increases with
increase in the number of frames as well as an increase in the
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number of error in one module. Likewise, the energy required
to scrub the modules increases as the number of frames and
injected fault also increases. This indicates that energy is a
function of time at constant power. Therefore, the values
obtained for energy to scrub frames is the product of the error
correction time with operating power of the FPGA, where the
power is the product of the FPGA operating voltage and
current. It was observed from the plot that as the number of
frames in a module increase from 13, 26, 39, the number of
faults injected also increases as the energy required to scrub
also increases from 24.44, 29.33, 3422 Nano joules
respectively.

However, in order to depict real-life scenario, SEU can
also occur in any two modules (module 1 and 2, module 1 and
3, module 2 and 3) or in all the three modules (module 1, 2
and 3). Therefore, in this work the FPGA keeps in memory the
original configuration of the test module for scenario where
the assumption for a good bit-level voting those not hold (that
is error will not occur in two or all the modules in the same
frame address and at exactly the same cell position in the
same scrub cycle), although this scenario is very unlikely to
occur considering the enormous configuration logic bit in the
FPGA and the stochastic nature of SEU.

Generally, it can be concluded that when the fault was
injected in only two modules and in three modules for error
detection time, error correction time and energy consumption
against varying number of frames in a module, the same trend
was observed as when a fault is injected in only one module.
However, the magnitude of error correction time and energy
consumption increases as the number of the module with
fault increases from two to three. This is because the total
number of injected fault in the FPGA configuration memory
increases.

Figure 7 shows the comparison of Error Correction time
versus Number of frames in a Module for One Module Fault
Injection between Improved FLR and FLR.

20 T
3 -Impmved FLR

--------------------------------

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Error Correction Time (ps)

13 26 39 52 65 78 g1 104 117 130
Number of Frames

Figure 7: Comparison of Error Correction time versus
Number of frames

In Figure 7, the bar chart shows the error correction time
for varying module size with 13, 26, 39, 52, 65, 78, 91, 104, 117
and 130 number of frames. The bars show the comparison
between the Improved FLR and the existing FLR. It was
observed that when the fault was injected on a module with
varying number of frames there was a reduction in the time

for the Improved FLR scrubbing algorithm to correct the
errors as compared to the FLR scrubbing algorithm. For the
same number of injected fault, the Improved FLR scrubbing
algorithm took 3.422 microseconds to correct the error for a
module size with 39 frames (which is the module
configuration used by the author in [2]) while the FLR
scrubbing algorithm took 5 microseconds. The percentage
improvement between Improved FLR and FLR is calculated to
be 31.6% using the equation below.

FLR —improved FLR
FLR

The energy consumption comparison between FLR and
Improved FLR is shown in Figure 8

% improvement = x100
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Figure 8: Comparison of Energy Consumption versus
Number of frames in a Module for One Module Fault
Injection between Improved FLR and FLR.

Figure 8 shows the result of the comparison in terms of
energy consumption between Improved FLR and FLR
scrubbing algorithm. It is observed that for a module size of
39 frames there was a reduction in the energy consumed to
scrub the module when Improved FLR scrubbing algorithm
was used as compared to the FLR. The percentage
improvement between Improved FLR and FLR is calculated to
be 61.1% using equation (8). Significant improvement was
also achieved when another module size was examined as it
can be clearly seen in Figure 8.

CONCLUSIONS

Frame Level Redundancy is an algorithm developed to
scrub the configuration memory of SRAM-based FPGA
against SEU when they are deployed in radiation
environment with high energy particles such as neutron with
energy in the range of Giga electron volts whereby radiation
strike flips the logic state in the configuration memory
causing a malfunction of the device. How fast this problem is
resolved is critical as the process also impacts on the energy
consumed. In other to mitigate the challenge of SEU, an
improved FLR scrubbing algorithm has been developed using
Cyclic Redundancy Check as an error detection technique.
This was developed on a MATLAB simulation environment.
The result obtained shows that when a fault is injected in one
configuration memory module with thirty-nine frames, the
improved FLR performed better than the FLR in terms of
error correction time against SEU and the energy
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consumption by 31.6% and 61.1% respectively.
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